Neural Networks, Fuzzy Inference Systems and Adaptive-Neuro Fuzzy Inference Systems for Financial Decision Making
نویسندگان
چکیده
This paper employs pattern classification methods for assisting investors in making financial decisions. Specifically, the problem entails the categorization of investment recommendations. Based on the forecasted performance of certain indices, the Stock Quantity Selection Component is to recommend to the investor to purchase stocks, hold the current investment position or sell stocks in possession. Three designs of the component were implemented and compared in terms of their complexity as well as scalability. Designs that utilized 1, 4 and 16 classifiers, respectively, were developed. These designs were implemented using Artificial Neural Networks, Fuzzy Inference Systems as well as Adaptive Neuro-Fuzzy Inference Systems. The design that employed 4 classifiers achieved low complexity and high scalability. As a result, this design is most appropriate for the application of concern.
منابع مشابه
Design and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System
Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....
متن کاملThe use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملPrediction of International Stock Markets Based on Hybrid Intelligent Systems
This paper compares the accuracy of three hybrid intelligent systems in forecasting ten international stock market indices; namely the CAC40, DAX, FTSE, Hang Seng, KOSPI, NASDAQ, NIKKEI, S&P500, Taiwan stock market price index, and the Canadian TSE. In particular, genetic algorithms (GA) are used to optimize the topology and parameters of the adaptive time delay neural networks (ATNN) and the t...
متن کامل